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The modelling of the pressure-strain correlation of turbulence is examined from a 
basic theoretical standpoint with a view toward developing improved second-order 
closure models. Invariance considerations along with elementary dynamical systems 
theory are used in the analysis of the standard hierarchy of closure models. In these 
commonly used models, the pressurestrain correlation is assumed to be a linear 
function of the mean velocity gradients with coefficients that depend algebraically on 
the anisotropy tensor. It is proven that for plane homogeneous turbulent flows the 
equilibrium structure of this hierarchy of models is encapsulated by a relatively 
simple model which is only quadratically nonlinear in the anisotropy tensor. This 
new quadratic model - the SSG model - appears to yield improved results over the 
Launder, Reece & Rodi model (as well as more recent models that have a 
considerably more complex nonlinear structure) in five independent homogeneous 
turbulent flows. However, some deficiencies still remain for the description of 
rotating turbulent shear flows that are intrinsic to this general hierarchy of models 
and, hence, cannot be overcome by the mere introduction of more complex 
nonlinearities. It is thus argued that the recent trend of adding substantially more 
complex nonlinear terms containing the anisotropy tensor may be of questionable 
value in the modelling of the pressurestrain correlation. Possible alternative 
approaches are discussed briefly. 

1. Introduction 
The pressurestrain correlation plays a pivotal role in determining the structure of 

a wide variety of turbulent flows. Consequently, the proper modelling of this term is 
essential for the development of second-order closure models that have reliable 
predictive capabilities. Rotta (1951) developed the first simple model for the slow 
pressurestrain correlation (i.e. the part that is independent of the mean velocity 
gradients) which describes the return to isotropy behaviour of turbulence within the 
framework of a full Reynolds stress closure. This model has served as a cornerstone 
for the representation of the slow pressurestrain correlation in a variety of the 
commonly used second-order closures such as the Launder, Reece & Rodi (1975) 
model. Subsequent to this work, Lumley (1978) demonstrated the need for nonlinear 
terms in models for the slow pressurestrain correlation and derived a nonlinear 
representation theorem for this correlation based on isotropic tensor function theory. 
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In the high-Reynolds-number and small-anisotropy limit, the Lumley (1978) model 
reduces to the Rotta model. 

The simplest model for the rapid pressure-strain correlation that is used in second- 
order closure modelling is based on the assumption of isotropy of the coefficients of 
the mean velocity gradients; this gives rise to a rapid pressurestrain model with a 
single term that is proportional to the mean rate of strain tensor (see Rotta 1972; 
Mellor & Herring 1973). Starting with the work of Launder et al. (1975), anisotropic 
models for the rapid pressurestrain correlation have been formulated wherein the 
coefficients of the mean velocity gradients are taken to be functions of the anisotropy 
tensor. In  the Launder et al. model, the fourth-rank tensor of coefficients of the mean 
velocity gradient tensor is linear in the anisotropy tensor whereas most of the newer 
models developed during the last decade are nonlinear (see Shih & Lumley 1985; 
Haworth & Pope 1986 ; Speziale 1987 ; Reynolds 1987 ; Fu, Launder & Tselepidakis 
1987). The nonlinear models of Lumley and co-workers have been primarily 
developed by the use of realizability constraints (see Lumley 1978). In contrast to 
this approach, the nonlinear model of Speziale (1987) was derived using a geostrophic 
flow constraint (i.e. material frame-indifference in the limit of two-dimensional 
turbulence), whereas W. C. Reynolds (1988, private communication) has attempted 
to develop models that  are consistent with Rapid Distortion Theory (RDT). 

In this paper, the general hierarchy of closure models for the pressure-strain 
correlation that are linear in the mean velocity gradients, with coefficients that  are 
functions of the anisotropy tensor, will be considered. This hierarchy of models, which 
was motivated by analyses of homogeneous turbulence, encompasses all of the 
closure models for the pressurestrain correlation that have been used in connection 
with second-order closures. A general representation for this hierarchy of closure 
models will be derived by means of invariant tensor function theory. This general 
representation for the pressurestrain correlation will then be applied to plane 
homogeneous turbulent flows - the class of flows that has long played a pivotal role 
in the screening and calibration of such models. However, there will be one notable 
difference with previous work on this subject: the simplest generic form of this 
hierarchy of models that  has the same equilibrium structure in the phase space of 
plane homogeneous turbulent flows as the general model will be sought. This generic 
form - which will be termed the SSG model - is only quadratically nonlinear in the 
anisotropy tensor. It has the advantage of being topologically equivalent to the 
general model in plane homogeneous turbulence with the simplicity of a structure 
that allows for the determination of all empirical constants based on calibrations 
with pertinent RDT results and two well-documented physical experiments (i.e. 
homogeneous turbulent shear flow and the return to isotropy). This new SSG model 
will be shown to yield improved results over the commonly used Launder et al. model 
for a variety of homogeneous turbulent flows which include plane strain, rotating 
plane shear, and the axisymmetric expansion/contraction. However, there are still 
some remaining deficiencies in the new model, particularly for rotating shear flow. 
Based on an analysis of the bifurcation diagram for rotating shear flow, it will be 
shown that these deficiencies are intrinsic to this general hierarchy of pressure-strain 
models and cannot be eliminated by the addition of more complex nonlinear terms. 
The implications that these results have for turbulence modelling will be discussed 
in detail along with suggested future directions of research. 
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2. The general pressure-strain model 

the NavierStokes and continuity equations 
We will consider the turbulent flow of a viscous, incompressible fluid governed by 

av, av, - ap -+v - - --+vv2vi, 
at *axj ax, 

? L O .  ax, 
In (1) and (2), v, is the velocity vector, P is the modified pressure, and v is the 
kinematic viscosity of the fluid. The velocity and pressure are decomposed into 
ensemble mean and fluctuating parts, respectively : 

v, = vi+ui, P = P+p.  (3) 
Here, the mean and fluctuating velocity are solutions of the transport equations 

where ri3 = -q is the Reynolds stress tensor. 
The Reynolds stress tensor Ti ,  is a solution of the transport equation 

where 

are, respectively, the third-order diffusion correlation, the pressure-strain cor- 
relation, and the dissipation rate correlation. Equation (8) is obtained by taking the 
symmetric part of the ensemble mean of the product of the fluctuating velocity uj 
with (6). For homogeneous turbulent flows, a t  high Reynolds numbers where the 
dissipation is approximately isotropic, the Reynolds stress transport equation (8) 
simplifies to 

where 
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is the scalar dissipation rate. Equation (12) becomes a closed system for the 
determination ofr, in terms of i%,/i3xj once closure models for lIii and E are provided. 
Since nii is the only unknown correlation that contains directional information, it is 
clear that it will play a pivotal role in determining the structure of the Reynolds 
stress tensor for a given mean velocity field. This dominant influence of ni, on the 
evolution of the Reynolds stress tensor in (12) has motivated researchers to rely on 
homogeneous turbulent flows for the testing and calibration of pressure-strain 
models. 

The fluctuating pressure p is a solution of the Poisson equation 

which is obtained by subtracting the divergence of (4) from the divergence of (1). In  
the absence of boundaries, (14) has the general solution 

For homogeneous turbulent flows (where the mean velocity gradients are spatially 
uniform) the pressurestrain correlation takes the form 

where 

It has been shown that Aii and Mtik, are functionals -over time and wavenumber 
space - of the energy spectrum tensor ; see Weinstock (1981, 1982) and Reynolds 
(1987). I n  a one-point closure, this dependence would suggest idealized models for A ,  
and illijkl that depend on the history of the Reynolds stress tensor and dissipation 
rate. The simplest such models are algebraic in form : 

where 

are the anisotropy tensor and turbulent kinetic energy. In  (19) and (20), dii and Aiikl 
can only depend on rij through bij since they are dimensionless tensors that  vanish 
in the limit of isotropic turbulence. Virtually all models for the pressurestrain 
correlation that have been used in connection with second-order closure models are 
of the general form of (19) and (20). The use of this hierarchy of models for general 
inhomogeneous turbulent flows is based on the assumption of a local homogeneous 
structure. Of course, since di, and Aiikl are actually functionals of the energy 
spectrum tensor, it  is clear that they will also contain information on the turbulent 
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macroscale as well as other parameters involving the turbulence structure. The 
inclusion of such effects in a one-point closure is an extremely difficult task which has 
not been attempted t o  date. While we believe that such work needs to be considered 
in the future, the purpose of the present paper is to gain a better understanding of 
the commonly used models (19) and (20) with the goal of obtaining their most 
optimal form. 

The mean velocity gradient tensor can be decomposed into symmetric and 
antisymmetric parts : 

where 

are the mean rate of strain tensor and mean vorticity tensor, respectively. Then, the 
model for the pressure-strain correlation specified by (19) and (20) can be written in 
the equivalent form 

n, = E f p ( b ,  s', a') (26) 

where 

are the dimensionless mean strain rate and vorticity tensor, whereas f&? denotes the 
part of the function ft, that  is linear in the mean velocity gradients and traceless. 
Form invariance under a change of coordinates requires that f i ,  transform as 

(28) 

where Q is the rotation tensor (and QT is its transpose) which characterizes a change 
in orientation of the coordinate axes. I n  mathematical terms, (28) requires that f ir  be 
an isotropic tensor function of its arguments. By using known representation 
theorems for isotropic tensor functions (see Smith 1971) to  construct f i ,  - and then 
by taking the linear and traceless part of f i j  - the following model for ni, is obtained 
(see Appendix A) : 

Qf(b,S', a') QT = f(QbQT, QSQT, Qw'QT), 

nii = P 1 E b i 3 + P 2 E ( b i k  bkj-%mn b?nn s i j ) + P 3 K s t i  

+/34 K ( b i k ' i k + b J k S i k - ~ m n S m n  s i i ) + b 5 K ( b i k  bkl ' 3 1  +bjk  ' k l  Sil-%m bmn'nl ' i j )  

+ P s K ( b t k ~ i k + b 3 k W 1 k ) + P ? K ( b d k b k 1  WjrZ+bjk bkl ' i l l ,  (29) 

where 

K K Pi = Pi,(II, III) +&(II, I II ) -  t r  (b -S)  +Pi2(II ,  III) -tr (b2.S),  i = 1,2, (30) 
E E 

/?,=/3,(II,III), j = 3 , 4  ,..., 7, 

II = b, b,, III = b,, bik bki, 

and t r  ( . )  denotes the trace. Equation (29) represents the most general form of the 
hierarchy of models (19) and (20) for the pressure-strain correlation that is consistent 
with the crucial physical constraint of invariance under coordinate transformations. 
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It will be shown later that the Launder et al. model is the linear limit of (29) wherein 
PI, P3, p4, and p6 are constants while PZ, Ps, and ~3, are zero. 

Finally, in regard to  the general model, a few comments should be made 
concerning non-inertial frames of reference. In  a non-inertial frame, the mean 
vorticity tensor ijij must be replaced by the intrinsic (i.e. absolute) mean vorticity 

(33) 

where a, is the rotation rate of the non-inertial frame relative to an inertial framing 
and emji is the permutation tensor (see Launder, Tselepidakis & Younis 1987; 
Speziale 1989). Furthermore, Coriolis terms must be added to the Reynolds stress 
transport equation which then takes the form 

tensor defined by - 
K.i = Bii + emii a,, 

(34) 
a@ avi 

i.. = - rik A- T .  i k  - -II i ,  +%aii - 2(rik emk, am + rik emki a,) 
13 ax, ax, 

in an arbitrary non-inertial reference frame. 

3. Plane homogeneous turbulence 

the mean velocity gradient tensor can be written in the form 
We will consider the general class of plane homogeneous turbulent flows for which 

Since the mean continuity equation (5) requires that avJax, = -av2/axz in plane 
homogeneous turbulent flows, (35) results by simply aligning the coordinates a t  a 45" 
angle relative to the principal directions of the symmetric part of 8vi/axi. Of course, 
in order to maintain the homogeneity and two-dimensionality of the mean flow, S 
and w are constants while 0, is given by 

ai = ( O , O ,  a) (36) 

(hence, the rotation is in the plane where the mean velocity gradients are applied). 
Equations (35) and (36) encompass, as special cases, plane shear, plane strain, 
rotating plane shear, and rotating plane strain turbulence. 

The Reynolds stress transport equation (34) for plane homogeneous turbulence 
can be written in terms of the anisotropy tensor bij(t*) (given that t* 5 St is the 
dimensionless time) : 

where 

0 - 0  

s;= (0 1 0 O ) ,  0 w * =  -ti ( -- ; I o)> 
0 0 0  

0 0 0  

(38) 

(39) n; = IIi*/2KS 
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and 9 = rii CEt/axj is the turbulence production. Equation (37) must be supplemented 
with a transport model for the turbulent dissipation rate in order to obtain a closed 
system. We will consider the most standard form of the modelled dissipation rate 
transport equation, given by 

where C,, and Ce2 can be functions of the invariants II and III of the anisotropy 
tensor (in the most commonly used form of this model, C,, and C,, are constants that 
assume the values of 1.44 and 1.92, respectively; see Hanjalic & Launder 1972). It 
will be argued later that  some of the crucial conclusions to be drawn concerning the 
limitations of this hierarchy of closure models for the pressurestrain correlation are 
independent of the specific form of (40). Furthermore, it should be noted that 
virtually all of the alterations to  (40) that  have been proposed during the last decade 
are highly ill-behaved (see Speziale 1990). 

The modelled dissipation rate equation (40) can be written in the dimensionless 
form 

Equation (41) is obtained by combining (40) with the transport equation for the 
turbulent kinetic energy 

K = 9-€, (42) 

which is exact for homogeneous turbulence. When the general model for the 
pressurestrain correlation (given by (29), with isij replaced by &) is substituted into 
(37), a closed system for the determination of b,  and e/SK is obtained. This system 
of equations has equilibrium solutions of the form 

where ( . ), denotes the solution in the limit as time t + co ; these solutions were shown 
by Speziale & Mac Giolla Mhuiris (1989a) to attract aEZ initial conditions. The 
equilibrium solutions (43) and (44) are obtained by solving the nonlinear algebraic 
equations that result when the time derivatives on the left-hand sides of (37) and (41) 
are set to zero. It is a simple matter to  show that there is a trivial equilibrium 
solution where 

(&Jm = O (45) 

which exists for all o/X and Q/S. Non-trivial equilibrium solutions where 
(EISK), =+ 0 exist for intermediate ranges of o/S and a/& wherein the trivial 
equilibrium solution (45) typically becomes unstable. 

We will now show that the non-trivial equilibrium values of II, ,  III,, (b,,),, and 
( 9 / ~ ) ~  are universal (i.e. completely independent of w / S  and Q / S )  for this hierarchy 

9 FLM 227 
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of models in plane homogeneous turbulent flows. A closed system of equations for the 
determination of the temporal evolution of I I ,  I l l ,  b,, and EISK is 

dll 2e 9 e  2 9 s  
G - S K (  T) 3 3 e S K  3 e S K  

-- I-- I I - 2 b  

E 8 S e  S e  9 s  

SK SK 3 ~ S K  3 3 e S K  e SK 

9 s  9 s  B e  6 E + gl- - - 11 - - - b 
dlII 3E 
-=a( z) e S K  e S K  3 3 e S K  SK SK 

9 e  9 s  9 s  9 e  

E SK e SK e SK e SK 

+pI-II+p2-III - 'p  --+p b ---ip511--, (46)  

+ $3' 111 - + ;p2 112 - 1 - - - - 

+ gb3 b,, ----;_P4 I I - -+  $p5 IIb33 ---ip5 III -- (47)  

Equations (46)  and (47)  are obtained by multiplying (37) with b and b2, respectively, 
and then taking the trace after the model (29)  for nil is substituted. The non-trivial 
equilibrium solutions are then obtained from the nonlinear algebraic equations 

(C,' - 1) - - (Cc2- 1) = 0, 
(:)w 

(53) 

which are derived by setting the time derivatives on the left-hand sides of (46)-(49) 
to zero and dividing by e/SK. The system of equations (50)-(53) will have solutions 
for II,, III,, (b33)w and that are completely independent of w / S  and s2/S - 
and hence universal - for plane homogeneous turbulent flows. 

will now be 
utilized to obtain the simplest generic form of (29)  that has the same equilibrium 
structure as the general model in the phase space of plane homogeneous turbulent 
flows. Owing to these four universal invariants, the quadratic terms in the rapid 
pressure strain correlation are not linearly independent for plane homogeneous 
turbulent flows. This quadratic part li'jg' of (29)  is defined as follows: 

This universal equilibrium structure of II,, III,, (b33)w and 

ni;' = p5 K(bik bkl sjl + bjk bkl $il -ibblm brnn snl & i j )  +p7 K(bik bkl ql+ bjk bkl Kl) .  (54)  
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For plane homogeneous turbulent flows, a straightforward, although somewhat 
tedious, calculation yields the relationships 

2III - 
bik bkl sjl + bjk bkl gil-%kl bl?n s?nk &ij = - b33(bik #jk + b j k s d k - % k l  8 i j ) - - - s i j ?  

3 b33 

(55) 

(56) 

where we have made use of (38) and the fact that the anisotropy tensor is of the form 
btkbkl  q l + b j k b k l  @ l  = -b33(btk q k + b j k  K k ) ,  

in such flows. Owing to (55) and (56), and the fact that I Im,  HIrn, (b33)rn and ( P / e ) w  
are universal invariants for all plane homogeneous turbulent flows, it follows that the 
quadratic terms in the rapid pressure-strain are directly related to the linear terms 
in such flows. Consequently, the equilibrium structure of (29) in plane homogeneous 
turbulent flows will be indistinguishable from that of the substantially simpler model 

nij = C 1 E b i j + C 2 E : ( b i k b k j - ~ ? n n b ? n n 6 i j )  

+ c 3 K s i j + c ~ K ( b ~ k s ~ k + b j k S ~ k - ~ m n s m n S ~ j ) + C g K ( b i k  y k + b j k  K k ) ?  (58) 

where cl, c,, ..., c6 are dimensional constants and we have made use of the fact that 

1 9  
2 K  

t r ( b - S )  = ---, (59) 

(60) 
- 9 

tr(b2-S) = + b 3 3 K ,  

which was also used in the derivation of (46)-(49). In alternative terms, (58) is 
topologically equivalent to the general model (29) in so far as the equilibrium 
structure of plane homogeneous turbulent flows is concerned. 

It is rather striking that an analysis of the equilibrium states of arbitrary plane 
homogeneous turbulence - coupled with the crucial physical constraint of invariance 
under coordinate transformations - collapses the general pressure-strain model 

(61) 
auk 

nij = e d i j ( b ) + K A i j k l ( b ) & -  
1 

(which can have as many as forty-five independent functions of b)  to the 
substantially simplified model (58)  that has only five undetermined constants. In the 
next section, a new model for the pressure-strain correlation will be developed. 

4. The SSG model: its asymptotic analysis and calibration 
Now, a new model for the pressure-strain correlation -which we will call the 

Speziale, Sarkar and Gatski (SSG) model -will be developed based on the previous 
invariant dynamical systems analysis coupled with the following additional 
constraints : 

(i) asymptotic consistency in the limit of small anisotropies ; 
(ii) consistency with RDT for homogeneously strained turbulent flows that are 

initially isotropic ; 
9-2 
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(iii) consistency with the equilibrium values for homogeneous shear flow obtained 
from the physical experiments of Tavoularis & Corrsin (1981) ; 

(iv) consistency with the RDT results of Bertoglio (1982), for rotating shear flows, 
which predict that  the most unstable flow occurs when the ratio of the rotation rate 
to the shear rate Q/S = 0.25 and that a flow restabilization occurs when Q / S  > 0.5 ; 

(v) consistency with the results of physical experiments on the decay of isotropic 
turbulence and the return to  isotropy of an initially anisotropic, homogeneous 
turbulence. 

Since the magnitude of the anisotropy is relatively small (llbll < 0.25 for most 
turbulent flows of engineering and scientific interest), we feel that terms which are 
of a comparable order of magnitude in b, should be maintained unless there is some 
overriding physical reason not to do so. In this fashion, the model can then be thought 
of as an asymptotically consistent truncation of a Taylor series expansion of A ,  and 
Mdrkl in the variable b,,. Since the simplified model for the rapid pressure-strain 
correlation in (58) is of O(b) ,  this suggests that c, - which in general can be a function 
of the invariants of b - should be replaced by 

c, - c; I I ~  

(where C, and C; are constants) for asymptotic consistency. Furthermore, since the 
model for the slow pressure-strain correlation is of O(b2) ,  and since most engineering 
flows have significant regions where B 2 c ,  we will replace the constant c, with the 
coefficient 

- (C, + cy 9/4, 
where C, and C: are constants. This yields the following model for the pressure-strain 
correlation : 

nii = - ( c , s + C ~ ~ ) b i i + C , € ( b i k b k j - ~ m n  bmn6, , )+(C,-C,*II~)KSii  

+ C , K ( b ~ ~ ~ j ~ + b , ~ ~ ~ ~ - ~ b m , ~ m ,  6ij)+C,K(bik Fk+bjk q k ) .  (62) 

Although (62) is topologically equivalent to (58) in so far as the equilibrium states are 
concerned, it will give rise to different temporal evolutions. We feel that it is better 
to use (62) as our final model for the pressure-strain correlation since all terms that 
are of a comparable order in bi, have been maintained for asymptotic consistency. 

Before using constraints (ii)-(v) to calibrate the SSG model given by (62), a few 
comments are in order concerning the relationship between this new model and 
previously proposed models. The SSG model is not significantly more complicated 
than the commonly used Launder et al. model which can be obtained from (62) in the 
linear limit as C:, C, and C; go to zero. In  fact, the SSG model is substantially 
simpler than the recently proposed nonlinear models of Shih & Lumley (1985) and Fu 
et al. (1987) (see Appendix B). 

The coefficients C, and C, have been calibrated by considering the return to 
isotropy problem (see Sarkar & Speziale 1990). Of course, for the return to  isotropy 
problem, only the terms containing the coefficients C, and C, in the pressure-strain 
correlation survive (i.e. the rapid pressure-strain correlation vanishes). Based upon 
realizability , dynamical systems considerations, and the phase space portrait of 
return to isotropy experiments, the following values of C, and C, were arrived at by 
Sarkar & Speziale (1990) : 

c, = 3.4, (63) 

C, 3(Cl-2) = 4.2. (64) 
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I I I I 

0 0.02 0.04 0.06 0.08 0.10 
5 

FIGURE 1. Phase space of the return to isotropy problem : Comparison of the predictions of the SSG 
model (---) and LRR model (----) with the plane strain experiment of Choi & Lumley (1984) 
(0). 6 = I D ;  ?/ = IIZ. 

Interestingly enough, the value of C, = 3.4 is quite close to the value of 3.6 for the 
Rotta coefficient that is currently used in the basic model of Launder and his co- 
workers. However, as demonstrated by Sarkar & Speziale (1990), the quadratic term 
containing C, is crucial to properly capture the experimental trends. I n  figure 1, the 
predictions of the SSG model and the Launder, Reece & Rodi (LRR) model are 
compared in the ( E , q )  phase space with the experimental data of Choi & Lumley 
(1984) for the return to isotropy from plane strain. The SSG model exhibits a curved 
trajectory that is well within the range of the experimental data;  the LRR model 
-as well as any model for which C, = 0 -erroneously predicts a straight line 
trajectory. In  figure 2 (a,  b) ,  the predictions of the SSG model and the LRR model for 
the temporal evolution of the anisotropy tensor are compared with experimental 
data for the relaxation from plane strain experiment of Choi & Lumley (1984) and 
plane contraction experiment of Le Penven, Gence & Comte-Bellot (1985). The SSG 
model, on balance, yields improved predictions over the LRR model. For more 
detailed discussions and comparisons, the reader is referred to the paper by Sarkar 
& Speziale (1990) where this quadratic model for the slow pressure-strain correlation 
was compared with data from four independent experiments on the return to 
isotropy. 

Constraint (ii), which requires consistency with RDT for a homogeneously strained 
turbulence that is initially isotropic, is commonly enforced in the turbulence 
modelling literature. While the dynamical systems analysis presented in 5 3 can 
guarantee proper long-time behaviour, this RDT constraint can be of considerable 
assistance in ensuring proper short-time behaviour ; if a model properly captures 
both the short- and long-time behaviour, it stands an excellent chance of performing 
well for all times. This RDT result requires that (see Crow 1968) 
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FIGURE 2. Time evolution of the anisotropy tensor during the return to isotropy. Comparison of 
the predictions of the SSG model (-) and LRR model (----) with experiments (0): ( a )  the 
plane strain experiment of Choi I% Lumley (1984), and (b )  the plane contraction experiment of Le 
Penven et al. (1985). 

and, hence, that  c 3 5  = 4  (66) 

for the SSG model. We found that models which deviated significantly from (66) 
performed poorly in homogeneous shear flows (e.g. such models yielded spurious 
points of inflexion in the time evolution of the turbulent kinetic energy). 

Constraints (iii)-(iv) were used to calibrate the remaining constants in the model, 
namely, Cy, C;, C,, and C5 as well as the constant C,, in the modelled e-transport 
equation. This was done using a value of C,, = 1.83 (as opposed to the more 
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Equilibrium 
values LRR model SSG model Experiments 

(b11)m 0.193 0.204 0.201 
(b2*)m -0.096 -0.148 -0.147 
(b,& -0.185 -0.156 -0.150 
(SKIEL 5.65 5.98 6.08 

TABLE 1.  Comparison of the predictions of the LRR model and the SSG model with the 
experiments of Tavoularis & Corrsin (1981) on homogeneous turbulent shear flow 

commonly adopted value of 1.92) which yields a power law decay in isotropic 
turbulence with an exponent of 1.2 -a value which is in better agreement with 
available experimental data as discussed by Reynolds (1987). It was not possible to 
obtain the exact equilibrium values of Tavoularis & Corrsin (1981) for homogeneous 
shear flow and satisfy the RDT results of Bertoglio (1982) for rotating shear flow (i.e. 
constraints (iii)-(iv)). A numerical optimization yielded the values of C: = 1.80, 
C,* = 1.30, C,  = 1.25, C, = 0.40 and C,, = 1.44 as the best compromise. The 
equilibrium values obtained from the SSG model (using these values of the constants) 
for homogeneous shear flow are compared with the values obtained from the LRR 
model and the experiments of Tavoularis & Corrsin (1981) in table 1. From these 
results, it is clear that the predictions of the SSG model are well within the range of 
the experiments whereas the predictions of the LRR model deviate significantly. 
Furthermore, the SSG model predicts that the largest growth rate in rotating shear 
flow occurs when Q/S x 0.22 and that a flow restabilization occurs when Q/S > 0.53 
in comparison to the corresponding RDT results of Q/S = 0.25 and Q/S > 0.5 (see 
Bertoglio 1982). These predictions of the SSG model are considerably better than 
those of the LRR model, which erroneously predicts that the largest growth rate 
occurs when Q/S = 0.14 and that a flow restabilization occurs when Q/S > 0.37. A 
more detailed discussion of the performance of the models in rotating shear flow will 
be presented in the next section. 

The SSG model has been carefully calibrated to perform well in shear flows both 
with and without added rotational strains. It is our belief that this will significantly 
enhance the performance of the model in turbulent boundary layers with streamline 
curvature - an analogous flow with a variety of important applications. However, 
unlike other recently derived models for the pressure-strain correlation such as the 
Shih-Lumley (1985) model and the Fu, Launder & Tselepidakis (FLT) (1987) model, 
the SSG model given by (62) does not satisfy the strong form of realizability. The 
strong form of realizability (see Lumley 1978) constitutes a sufficient condition to 
guarantee positive component energies in homogeneous turbulent flows. The SSG 
model only satisfies a weak form of realizability wherein the turbulent kinetic energy 
is guaranteed to be positive ; this is a direct consequence of the form of the modelled 
&-transport equation (see Speziale 1990). We decided to opt for the weaker form of 
realizability for two main reasons. First, if the turbulent kinetic energy is positive, 
realizability can only be violated by fairly large anisotropies, such that 

(where 1) * 11 is the L, norm or maximum eigenvalue), which are outside of the expected 
domain of applicability of such idealized models. It must be kept in mind that, so 
long as the model yields a positive turbulent kinetic energy, i t  can be applied to a 
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flow (it  is primarily negative kinetic energies that are computationally fatal). Second, 
it has been our experience that models which satisfy the strong form of realizability 
become computationally ‘stiff’ in flows with large anisotropies. This results from the 
fact that the finite-difference form of the modelled equations usually does not exactly 
satisfy realizability (see Speziale & Mac Giolla Mhuiris 1 9 8 9 ~ ) .  No such problems are 
encountered by the weak form of realizability since it is satisfied exactly by most 
standard numerical formulations of the model. Finally, it should be mentioned that 
the SSG model was not forced to satisfy material frame indifference in the limit of 
two-dimensional turbulence (Speziale 1983) which constitutes another extreme 
constraint that is a rigorous consequence of the Navier-Stokes equations. It has 
recently become apparent to us that when such constraints as material frame 
indifference and strong realizability (correct as they may be for general flows) are 
applied to highly idealized models, there is a strong possibility that the model will 
become overly biased so that it performs poorly in the more commonly encountered 
turbulent flows. 

5. Performance of the SSG model in homogeneous flows 
The SSG model given by (62) will now be tested in four independent homogeneous 

turbulent flows. For clarity, we will summarize the values of the constants that were 
arrived at  in the previous section: 

C, = 3.4, Cy = 1.80, C, = 4.2, 

C, = 9, Ct  = 1.30, C, = 1.25, 

C ,  = 0.40, C,, = 1.44, C,, = 1.83. 

The problem of homogeneous turbulent shear flow in a rotating frame will be 
considered first. For this case, the mean velocity gradients and the rotation rate of 
the reference frame are given in matrix form by 

Qi = ( O , O , Q ) ,  (71) 

respectively. The initial conditions correspond to a state of isotropic turbulence 
where 

bi, = 0, K = KO,  E = c0 (72) 

a t  time t = 0. It was shown by Speziale & Mac Giolla Mhuiris ( 1 9 8 9 ~ )  that the 
solution only depends on the initial conditions through the dimensionless parameter 
Eo/SKo; the dependence of the solution on the rotation rate is exclusively through the 
dimensionless parameter Q/S.  Two types of equilibrium solutions have been 
established for this problem (Speziale & Mac Giolla Mhuiris 1989a) : one where 
(E/SK), = 0 which exists for all Q/s and one where ( e / S K ) ,  > 0 which exists only 
for a small intermediate band of values for 01s. The zero equilibrium value is 
associated predominantly with stable flow wherein K and E undergo a power-law time 
decay ; the non-zero equilibrium values are associated with unstable flow wherein K 
and E undergo an exponential time growth. The two solutions undergo an exchange 
of stabilities for intermediate values of Q/S (which includes the case of pure shear 
where Q/S = 0). In  this fashion, the second-order closures are able to  account for 
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both the shear instability -with its exponential time growth of disturbance kinetic 
energy - and the stabilizing (or destabilizing) effect of rotations on shear flow. 

In  figures 3(a-c), the predictions of the SSG model for the time evolution of 
turbulent kinetic energy are compared with those of the LRR model and the results 
of the large-eddy simulations of Bardina, Ferziger & Reynolds (1983) for rotating 
shear flow. From these figures, it is clear that  the SSG model does a much better 
overall job of capturing the trends of the large-eddy simulations. Several observations 
are noteworthy : (a )  the LRR model exhibits too strong a growth rate for pure shear 
(521s = 0) in comparison to  the SSG model and large-eddy simulations; (b)  both the 
SSG and LRR models yield too weak a growth rate for the Q/S = 0.25 case, however 
the SSG model is substantially better ; and (c) the SSG model properly captures the 
weak growth rate that  occurs for Q/S = 0.5, whereas the LRR model erroneously 
predicts a flow restabilization. The premature flow restabilization predicted by the 
LRR model a t  521s x 0.37 is somewhat serious since, in addition to  the results of 
large-eddy simulations, linear stability theory and RDT predict that there should be 
unstable flow for the entire range of 0 < 521s < 0.5 (see Lezius & Johnston 1976; 
Bertoglio 1982). As mentioned earlier, the SSG model does not predict a flow 
restabilization until 52/S > 0.53. 

It would be useful a t  this point to  compare the performance of the SSG model in 
rotating shear flow with that of some newer models that have been recently 
proposed. Three such models - those of Shih & Lumley (1985), FLT and the RNG 
model of V. Yakhot & S. A. Orszag (1988, private communication) - were compared 
in a recent study of Speziale, Gatski & Mac Giolla Mhurius (1990). It was established 
in that study that, among these models, FLT performed the best in rotating shear 
flow. Hence, for simplicity, we will only compare the SSG model with the FLT model. 
In  figure 4(a-c), the results for the turbulent kinetic energy obtained from the SSG 
model and the FLT model for the rotation rates of sZ/S = 0, 0.25, and 0.50 are 
compared with the large-eddy simulations of Bardina et al. (1983) for rotating shear 
flow. It is clear from these results that the SSG model properly captures the trends 
of the large-eddy simulations which indicate that all three cases are unstable and 
that the 521s = 0.25 case has the strongest growth rate. On the other hand, the FLT 
model erroneously predicts that  the Q/S = 0 and 0.25 cases are equally energetic and 
that the 5215 = 0.5 case has undergone a restabilization. Like the LRR model, the 
FLT model erroneously predicts a premature restabilization a t  52/23 x 0.39. It 
may be of concern that a heavy emphasis has been placed on comparisons with large- 
eddy simulations for rotating shear flow (unfortunately, no direct simulations or 
physical experiments have been conducted for this problem). However, it must be 
emphasized that the critical evaluations have been based on which states should be 
more energetic - results which have been confirmed independently by RDT and 
linear stability theory. 

A bifurcation diagram for the general hierarchy of closure models (61) is shown in 
figure 5 for rotating shear flow. Here, the equilibrium value of (s /SK),  is plotted as 
a function of Q/S. The SSG model as well as the other commonly used models have 
the same topological structure in rotating shear flow, as indicated in figure 5. There 
are two equilibrium solutions : the solution where (e/SK),  = 0 exists for all 52/S but 
becomes unstable in the interval AB; the non-zero solution for (s/SK),, which lies on 
the semi-ellipse ACB, exchanges stabilities with the trivial solution (s /SK),  = 0 in 
the interval A < sZ/S < B.  For Q/S < A-6A and Q/S > B+SB (where 6A and 6B 
represent a small increment that  depends on the model) the trivial equilibrium value 
of (EISK), = 0 is associated with solutions where the kinetic energy undergoes a 
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I 

power-law decay with time; for A-SA < Q/S < B+SB, this trivial solution is 
associated with solutions where the kinetic energy undergoes a power-law growth 
with time. The non-zero equilibrium values (EISK) ,  > 0 (on the semi-ellipse ACB) 
are associated with solutions where the kinetic energy grows exponentially with time. 
It can be shown (see Speziale & Mac Giolla Mhuiris 1989a) that the growth rate h for 
A < sZ/S < B is given by 

A = @ - - 1 )  - , 0, (73) 
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FIGURE 3. Time evolution of the turbulent kinetic energy in rotating shear flows. Comparison of 
the predictions of the SSG model (-) and LRR model (----) with the large-eddy simulation of 
Bardina et al. (1983) (0) for E,,/SK, = 0.296: (a) 8 / S  = 0, ( b )  8/S = 0.25, and (c) 8/S = 0.5. 

where a = (Cc2 - l)/(Cel - 1). Hence, point C - which corresponds to  the maximum 
value of ( s /SK) ,  - represents the most energetic state with the largest growth rate 
of kinetic energy. 

The coordinates [sZ/S, (e/SK),] of points A ,  B,  and C (in figure 5 )  for the LRR 
model and the SSG model are 

LRR Model 

SSG Model 

The improved performance of the SSG model in rotating shear flow is largely due to 
the fact that  its most energetic state (point C on the bifurcation diagram shown in 
figure 5 )  is located close to Q/S = 0.25 -the value predicted by rapid distortion 
theory. However, it needs to be mentioned at this point that  the reason we were not 
able to satisfy this RDT result exactly is due to  a defect in the general hierarchy of 
models (61). Owing to (73) and the fact that the bifurcation diagram is symmetric 
about its most energetic state (point C in figure 5 ) ,  the general hierarchy of models 
(61) erroneously predicts Richardson number similarity if point C is located a t  
521s = 0.25. Such models will yield solutions for K and 6 that scale with the 
Richardson number 

A = [ -0.09,0], B = [0.37,0], C = [0.14,0.167] 

A = [-0.09,0], B = [0.53,0], C = [0.22,0.254]. 

Ri = - 2(Q/S) (1 - 2Q/S) (74) 

and, thus, erroneously predict that  the Q/S = 0 and 0.5 cases are identical. Large- 
eddy simulations, RDT (Bertoglio 1982), and independent mathematical analyses of 
the Navier-Stokes equations (Speziale & Mac Giolla Mhuiris 1989b) indicate that the 
52/S = 0 and a/# = 0.5 cases are distinct. By moving the most energetic state a 
small distance to  the left of Q/S = 0.25 - as is done with the SSG model - the proper 
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growth rates obtained from large-eddy simulations for Q/S = 0 and 0.5 can be 
reproduced (see figures 3a and 3 c ) .  However, the substantially larger growth rate for 
Q/S = 0.25 shown in figure 3 ( b )  (which has independent support in the RDT 
calculations of Bertoglio 1982), cannot be reproduced by the SSG model. This is a 
defect in the general hierarchy of models (61) that is intimately tied to their 
prediction of universal equilibrium values for II,, III,, (b33)m and ( P / e ) ,  in plane 
homogeneous turbulent flows - an oversimplification that is not supported by 
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FIGURE 4. Comparison of the models with large-eddy simulations of Bardina et al. (1983) for 
rotating shear flow for 52/5 = 0 (0,  -), 0.25 (0,  ---) and 0.5 (A, . . . . .) :  (a)  Bardina et aZ., ( b )  
FLT model, and (c) SSG model. 

physical or numerical experiments. 7 Nonetheless, despite this deficiency, the SSG 
model performs reasonably well - and is superior to other existing second-order 
closures - for rotating shear flow, as evidenced by table 1, figures 3(a-c), and 4(a-c). 

Now, we will examine the performance of the SSG model in homogeneous plane 
strain turbulence for which the mean velocity gradients are given by 

and the turbulence evolves from an initial state of isotropy. Comparisons of the 
model predictions will be made with the direct numerical simulations of Lee & 
Reynolds (1985) on plane strain. Such comparisons must be made with caution owing 
to the low turbulence Reynolds numbers of the direct simulations. However, 
comparisons with physical experiments (e.g. Tucker & Reynolds 1968 and Gence & 
Mathieu 1980) are equally problematical owing to  the uncertainty in the initial 
conditions for s/SK and possible large-scale contamination from the walls of the test 
apparatus. 

I n  figure 6, the time evolution of the turbulent kinetic energy for the LRR model 
and SSG model are compared with the direct simulations of Lee & Reynolds (1985) 
for plane strain corresponding to  the initial condition so/SKo = 2.0. It is clear from 
this figure that both models perform extremely well. In figure 7, the time evolution 
of the non-zero components of the anisotropy tensor are shown. Although the 
quantitative accuracy of the models is not extremely good, i t  is clear that  the SSG 
model does better than the LRR model and reproduces the crucial trends of the 
direct simulations. I n  figures 8 and 9, the time evolution of the turbulent kinetic 

t It is not possible to tie this deficiency to  the modelled e-transport equation since all 
dependence on e can be eliminated in the RDT limit. 
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FIGURE 5 .  Bifurcation diagram for rotating shear flow. 
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FIQURE 6. Time evolution of the turbulent kinetic energy in plane strain for E,,/SK, = 2.0. 
Comparison of the predictions of the LRR model (----) and SSG model (-) with the direct 
simulations of Lee & Reynolds (1985) (0). 

energy and non-zero components of thc anisotropy tensor corresponding to the initial 
condition of eo/SK,  = 1 .O are shown. The same conclusions can be drawn from these 
results: the SSG model yields improved predictions over' the LRR model and, on 
balance, compares reasonably well with the direct simulations which would be 
expected to have somewhat elevated anisotropies due to the lower turbulence 
Reynolds number. We will not make more extensive comparisons with the 
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FIGURE 7 .  Time evolution of the anisotropy tensor in plane strain for ea/SKa = 2.0. Comparison of 
the predictions of the LRR model (----) and SSG model (-) with the direct simulations of Lee 
& Reynolds (1985) (0). 
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FIGURE 8. Time evolution of the turbulent kinetic energy in plane strain for co/SKo = 1.0. 
Comparison of the predictions of the LRR model (----) and SSG model (-) with the direct 
simulations of Lee & Reynolds (1985) (0). 

predictions of other turbulence models since our main purpose here was simply to 
establish that the alterations made in the LRR model - to yield the SSG model with 
its improved behaviour in rotating shear flows - do not compromise its performance 
in plane strain. 
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FIQURE 9. Time evolution of the anisotropy tensor in plane strain for eo/SK0 = 1 .O. Comparison of 
the predictions of the LRR model (----) and SSG model (-) with the direct simulations of Lee 
& Reynolds (1985) (0). 

Finally, we will examine the performance of the SSG model for the axisymmetric 
contraction and expansion in homogeneous turbulence. Since the SSG model (like 
virtually all other existing models for the pressure-strain correlation) was calibrated 
based on plane homogeneous turbulent flows, it would be desirable to assess its 
performance in a three-dimensional flow. For the axisymmetric contraction, the 
mean velocity gradients are given by 

whereas in the axisymmetric expansion they take the form 

The time evolution of each of these turbulent flows - from an initially isotropic state 
-will be considered. Hence, as with plane shear and plane strain, the solutions will 
only depend on the initial conditions through the parameter Eo/SKo. Comparisons 
will be made with the predictions of the LRR model and the direct numerical 
simulations of Lee & Reynolds (1985) for the same reasons as cited above. 

I n  figure 10, the time evolution of the turbulent kinetic energy for the 
axisymmetric contraction is shown corresponding to the initial condition s,/SK, = 
0.179 which was taken from the direct simulations of Lee & Reynolds (1985). From 
these results, i t  is clear that the SSG model yields noticeably improved predictions 
over the LRR model; however, both models predict growth rates that are smaller 
than those in the direct simulations. I n  figure 11, the time evolution of the non-zero 
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FIGURE 10. Time evolution of the turbulent kinetic energy in the axisymmetric contraction for 
eo/SK,, = 0.179. Comparison of the predictions of the LRR model (----) and SSG model (-) 
with the direct simulations of Lee & Reynolds (1985) (0). 
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FIGURE 11. Time evolution of the anisotropy tensor in the axisymmetric contraction for 
E,,/SK, = 0.179. Comparison of the predictions of the LRR model (----) and SSG model (-) 
with the direct simulations of Lee & Reynolds (1985) (0). 

components of the anisotropy tensor are shown for the axisymmetric contraction 
where eo/SKo = 0.179. While the differences between the SSG and LRR models are 
small, it is clear that  the SSG model yields results that are more in line with the direct 
simulations. 
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FIGURE 12. Time evolution of the turbulent kinetic energy in the axisymmetric expansion for 
co/SK, = 2.45. Comparison of the  predictions of the L R R  model (----) and SSG model (-) with 
the direct simulations of Lee & Reynolds (1985) (0). 
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FIGURE 13. Time evolution of the anisotropy tensor in the axisymmetric expansion for 
co/SKo = 2.45. Comparison of the predictions of the L R R  model (----) and SSG model (-) 
with the direct simulations of Lee & Reynolds (1985) (0). 

In  figure 12, the time evolution of the turbulent kinetic energy for the 
axi-ymmetric expansion is shown for the initial condition eO/SKO = 2.45 taken from 
the direct numerical simulations of Lee & Reynolds (1985). It is clear from this figure 
that both the SSG and LRR models yield results that  are in excellent agreement with 
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the direct simulations. However, the time evolution of the non-zero components of 
the anisotropy tensor shown in figure 13 show more significant differences. Here, the 
predictions of the SSG model appear to be substantially better than those of the 
LRR model. 

6. Conclusions 
The modelling of the pressure-strain correlation of turbulence has been considered 

based on invariance arguments and a dynamical systems approach. Several 
important conclusions have been drawn about the standard hierarchy of closures (61) 
which led to the development of a new model - the SSG model. A summary of these 
findings can be given as follows: 

(i) It was proven that the standard hierarchy of models yields non-trivial values 
for the equilibrium states II,, III,, (b33),, and ( 9 / ~ ) ~  that are universal (i.e. that do 
not depend on w/S, Sa/S or the initial conditions) for plane homogeneous turbulent 
flows. As a direct consequence of these universal invariants, it was shown that, for 
plane homogeneous turbulent flows, the general model (61) for the pressure-strain 
correlation is topologically equivalent to a substantially simpler model - the SSG 
model -which is only quadratically nonlinear in the anisotropy tensor. 

(ii) The SSG model was calibrated by using existing data from isotropic decay 
experiments, return to isotropy experiments, and homogeneous shear flow experi- 
ments along with the RDT results of Crow (1968) and Bertoglio (1982). By means 
of this more systematic method of calibration, the SSG model was demonstrated to 
perform, better than the LRR model - as well as the newer models of Shih & Lumley 
and Fu et al. -for a variety of homogeneous turbulent flows. The flows that were 
examined included the challenging test case of rotating shear flow (where rotations 
can either stabilize or destabilize the flow) and the axisymmetric expansion/ 
contraction which constitutes a three-dimensional mean turbulent flow. 

(iii) Although the SSG model performs reasonably well for a variety of 
homogeneous turbulent flows, there are still major deficiencies with it that are 
intrinsic to this general hierarchy of models. These deficiencies emanate from the 
prediction of universal equilibrium values for II,, HIm, (b3&, and ( 9 / e ) ,  in plane 
homogeneous turbulent flows - an obvious oversimplification that is not supported 
by physical experiments. As a result of this deficiency, the general model (61) 
erroneously predicts that rotating shear flow has growth rates that are symmetric 
about their most energetic value. Hence, in order to satisfy the RDT constraint of 
Bertoglio (1982) - which puts the most energetic state at  sZ/S = 0.25 - the models 
must exhibit Richardson-number similarity. This is inconsistent with the Navier- 
Stokes equations as proven by Speziale & Mac Giolla Mhuiris (19893) and illus- 
trated by Bardina et al. (1983). 

(iv) Since the general model (61) for the pressure-strain correlation gives an 
incomplete picture of plane homogeneous turbulent flows no matter what form is 
taken for sQ,(b) and A&(b), we feel that the process of adding highly complex 
nonlinear terms in b ,  is somewhat questionable. Such complex nonlinear terms in the 
rapid pressure-strain correlation have been largely motivated by the desire to satisfy 
the strong form of realizability. However, it must be remembered that the strong 
form of this constraint only constitutes a sufficient condition for the satisfaction of 
realizability in homogeneous turbulent flows. Owing to the relatively simple 
topological structure of the general model in rotating shear flow - which is in no way 
altered by the addition of more complex nonlinearities in b ,  - the application of the 
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strong form of realizability either removes the degrees of freedom necessary to 
properly calibrate the model or leads to stiff behaviour. 

Despite the deficiencies discussed above, the SSG model seems to perform 
moderately well in a variety of homogeneous turbulent flows as documented in this 
paper. While further improvements would be most welcome, we feel that it is 
unlikely that they will come from the standard hierarchy of models (61). 
Fundamentally new approaches will be needed. Future research will be directed on 
two fronts. The SSG model will be implemented in a full second-order closure for the 
computation of a variety of complex aerodynamic flows that are of technological 
interest. We believe that when the SSG model is used within the framework of a 
sound second-order closure, i t  may be possible to obtain acceptable engineering 
answers for a range of turbulent shear flows with streamline curvature. In parallel 
with this effort, entirely new directions in modelling the pressure-strain correlation 
will be pursued. These will involve the introduction of a tensor lengthscale - to better 
account for anisotropies - and the possible solution of a transport equation for MilIcl 
to account for history effects in the rapid pressure-strain. A closer examination of 
these issues will be the subject of a future paper. 
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Appendix A 
Consider the tensor function 

4, = F,(b, S’, a’). 
Form invariance under coordinate transformations (28) requires that Fij be of the 
form (see Smith 1971): 

F = a,/+a, b + a2 b2 + a3 S’+ a4 S” + a,(bS’ +Sb) + a,(b2S’ +SIB2) 
+ ~ , ( b S ’ 2 + S ’ 2 b ) + ~ g ( b 2 S ’ 2 + S ’ 2 b 2 ) + ~ g ( b W ’ - ~ ’ b ) + ~ 1 O ~ 3 / b ~ 3 /  
+all(b2a’- O’b2) +a,2(w’bO’2-ci’2bo’) +~,,(S’O’-Q’S) +a,, o’S’W’ 

- 
+al5(S2O‘-Gj’s2)  +a16(w’sIw’2-w’2sO’) +a,, 0 ’ 2 ,  (A 2) 

where the ai depend on all possible invariants, i.e. 
ai = ui(II,III, t r a f 2 ,  t r S 2 ,  t r S 3 ,  t rbS,  trb2S’, t rbS2,  

t r  b2S2, tr ba”, tr b20’2, t r  w’bw’2, 
t r  tr S 2 w ‘ 2 ,  t r  B ’ S W ’ ~ ,  t r  bS’w’, t r  b2Sw‘, 
t r  bw”S’, t r  bS2a”), i = 0,1,2, . . ., 17. (A 3) 

Taking the linear part of F,, in $, and ij; yields the equation 

FL) = Po /+ p1 b + p2 b2 +p3 S’ 
+p,(bS’ + S’b) +p,(b2S’ + Sb2) +p,(bO’- O’b) +P,(b2Q’- O’b’), (A 4) 

(A 5 )  
(A 6) 
(A 7) 
(A 8) 

where 
Po = poo(lI ,  Ill) + pOl ( I I ,  I l l )  t r  (b - S’) + po2(II,  III) tr (b2 - S’), 
p1 = pl0(lI, Ill) + pll(II, I I I )  t r  (b .S’) + p12(II,  III)  tr (b2 - S ) ,  
p2 = p2,(lI,IlI)+pZl(II,III) t r  (bSS’) +pzZ(II,III) tr (b2.S) ,  

pi = pi(II, I I I ) ,  i = 3,4, ..., 7. 
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Then, by taking the deviatoric part of FBI") (since nij is traceless) and multiplying by 
E we obtain IT i j :  

Equation (29) results when ( A  4)-(A 8) are substituted into (A 9 )  and the identities 
in (27)  are made use of. 

(A 9 )  n - e 04-1 (L) 
t j  - ( F i j  8 k k  ' i j ) .  

Appendix B 

following form : 

Shih-Lumley Model 

The pressure-strain models of Shih & Lumley (1985) and Fu et al. (1987) take the 

nij = -P€bij+ (g+8a5) KRij-$( 1-015)  [Ttk (A+ aa emkjOm) 

axk 

where ~ ~ ~ = - & ( 1 + 0 . 8 J ' $ ) ,  F = 1+9II+27III, (B 2)  

/3 = 2 + 1p{80.1 In [ 1 + 62.4( - II + 2.3III)]} ; 
II  = -3,j b,j, III = +bij bjk bki, (B 3) 

(B 4) 
Fu, Launder and Tselepidakis Model 

ni3 = - C : ~ [ 2 b i 3 + 4 y ( b i k b k j - - f b , ,  bmn6ij)]-0.6 [ 7tk (::: -+e mkj'm) 
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